Enantioselective Synthesis Hot Paper

How to cite:

International Edition: doi.org/10.1002/anie.202015895 German Edition: doi.org/10.1002/ange.202015895

Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF₂-Containing Trisubstituted Cyclopropanes

Daniela M. Carminati, Jonathan Decaens, Samuel Couve-Bonnaire, Philippe Jubault,* and Rudi Fasan*

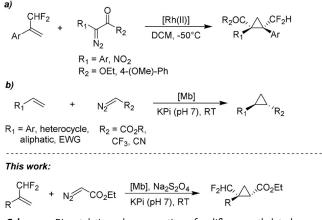
Abstract: The difluoromethyl (CHF_2) group has attracted significant attention in drug discovery and development efforts, owing to its ability to serve as fluorinated bioisostere of methyl, hydroxyl, and thiol groups. Herein, we report an efficient biocatalytic method for the highly diastereo- and enantioselective synthesis of CHF₂-containing trisubstituted cyclopropanes. Using engineered myoglobin catalysts, a broad range of α -difluoromethyl alkenes are cyclopropanated in the presence of ethyl diazoacetate to give CHF₂-containing cyclopropanes in high yield (up to >99%, up to 3000 TON) and with excellent stereoselectivity (up to >99% de and ee). Enantiodivergent selectivity and extension of the method to the stereoselective cyclopropanation of mono- and trifluoromethylated olefins was also achieved. This methodology represents a powerful strategy for the stereoselective synthesis of high-value fluorinated building blocks for medicinal chemistry, as exemplified by the formal total synthesis of a CHF₂ isostere of a TRPV1 inhibitor.

Due to their peculiar conformational properties, cyclopropane rings contribute key structural motifs and pharmacophores in many natural and synthetic bioactive molecules.^[1] Accordingly, there has been a significant interest in developing methodologies for the synthesis of functionalized cyclopropanes.^[2] Along with cyclopropanes, fluorinated substituents have been extensively exploited in medicinal chemistry toward the discovery and development of new drugs.^[3] It is indeed well recognized that the introduction of fluorinated substituents can significantly affect the p K_a , lipophilicity, cell permeability, and/or metabolic stability of a bioactive molecule, often leading to significant improvements in its pharmacological and/or pharmacokinetic properties.^[3]

Among fluorinated substituents, the CHF₂ group has recently attracted considerable attention due to its value in serving as bioisostere for the methyl group,^[4] which is widely exploited for tuning the pharmacological properties of bioactive molecules.^[5] In addition, owing to its electronic

[*] Dr. D. M. Carminati, Prof. Dr. R. Fasan Department of Chemistry, University of Rochester 120 Trustee Road, Rochester, NY 14627 (USA) E-mail: rfasan@ur.rochester.edu
J. Decaens, Dr. S. Couve-Bonnaire, Prof. Dr. P. Jubault Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014) 76000 Rouen (France) E-mail: philippe.jubault@insa-rouen.fr
Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under:

https://doi.org/10.1002/anie.202015895.


Angew. Chem. Int. Ed. 2021, 60, 1-6

and hydrogen bond donor properties, the CHF_2 group has also been exploited as a functional mimic of hydroxyl or thiol groups.^[6] For example, a CHF_2 moiety was employed to mimic a cysteine thiol group in inhibitors of the hepatitis C virus NS3 protease, resulting in analogs with enhanced potency.^[7]

Despite the well recognized utility of cyclopropanes and CHF₂ groups in medicinal chemistry, the asymmetric synthesis of difluoromethyl-containing cyclopropanes has remained largely underdeveloped.^[8] To the best of our knowledge, the only example of an asymmetric synthesis of CHF₂-containing cyclopropanes with broad substrate scope involves rhodium-catalyzed cyclopropanations in the presence of donor-acceptor or acceptor-acceptor diazo reagents (Scheme 1 a).^[9a] Notably, no chemo- or biocatalytic methods have been reported for the asymmetric cyclopropanation of CHF₂-containing olefins with readily available acceptor-only diazo reagents.

Over the past few years, heme-containing proteins^[10] and artificial metalloenzymes^[11] have emerged as promising systems for catalyzing "abiological" cyclopropanation reactions.^[12] In particular, our group has previously reported the high activity and stereoselectivity of engineered myoglobins (Mb) toward promoting the cyclopropanation of aryl-substituted olefins with ethyl diazoacetate (Scheme 1 b).^[10b,c] More recently, the scope of these biocatalysts and myoglobin-catalyzed reactions was expanded to include other diazo reagents carrying α -electron withdrawing groups (Scheme 1 b) as well as other olefins, producing enantioenriched cyclopropanes amenable to further diversification.^[13] Despite this progress, fluorinated olefins have remained elusive

Previous work:

 $\textit{Scheme 1.}\ Biocatalytic cyclopropanation of <math display="inline">\alpha\text{-difluoromethylated}$ alkenes.

© 2020 Wiley-VCH GmbH

These are not the final page numbers!

Wiley Online Library

substrates for biocatalytic cyclopropanations. Herein, we report the first example of a biocatalytic method for the stereoselective synthesis of difluoromethyl-functionalized cyclopropanes, which was made possible through the cyclopropanation of electron poor α -difluoromethyl alkenes by means of engineered myoglobin catalysts (Scheme 1).

We started this work by testing the catalytic activity of wild-type sperm whale myoglobin (Mb) toward catalyzing the formation of cyclopropane **3a** starting from α -difluoromethyl styrene (**2a**) in the presence of ethyl diazoacetate (EDA, **1**) as carbene source (Table 1, entry 1). While showing promising

Table 1: Myoglobin-catalyzed cyclopropanation of α -difluoromethyl-styrene (2a) in the presence of ethyl 2-diazoacetate (EDA, 1).^[a]

C	CHF ₂			F2HC,/	CO2Et
	OEt _	0.2 mol% catalyst Na ₂ S ₂ O ₄ , KPi buffer (pH 7) RT			
	$+ N_2 \longrightarrow N_2$				
2a	1			3a	
Entry	Protein	Yield	TON	de [%]	ee [%]
		(GC) [%]			
1	МЬ	37	185	79	5
2	Mb(H64V)	20	100	75	4
3	Mb(V68A)	33	165	97	91
4	Mb(H64G,V68A)	38	190	99	90
5	Mb(H64A,V68A)	26	130	99	98
6	Mb(H64V,V68A)	97	485	97	>99
7	Mb(H64V,V68G)	44	220	71	92
8	Mb(H64V,V68F)	21	105	76	-4
9	Mb(H64V,V68A) ^[b]	30	3000	96	98
10	Mb(H64V,V68A) ^[c]	87 ^[d]	435	>99	>99
11	Mb(H64V,V68A) ^[e]	67	335	96	>99
12	Mb(L29T,H64V,V68F)) 58	290	90	-87

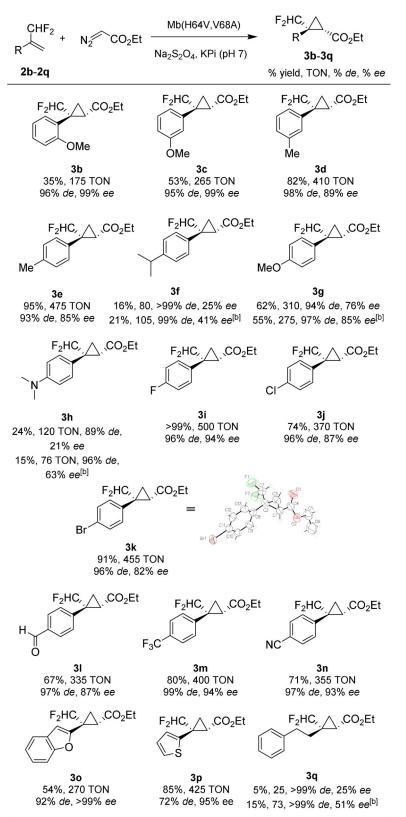
[a] Reaction conditions: 20 μ M purified Mb variant, 10 mM styrene (**2a**), 20 mM EDA (**1**), 10 mM Na₂S₂O₄, in phosphate buffer (KPi 50 mM, pH 7), r.t., 16 hours. Product yield, diastereomeric and enantiomeric excess were determined by chiral GC-FID analysis. [b] Using 1 μ M Mb(H64V,V68A). [c] 70 mg of **2a** in 45-mL scale. [d] Isolated yield. [e] Using whole cells (OD₆₀₀ = 10).

activity (37% yield), wild-type Mb produced 3a with only moderate diastereoselectivity (79% de) and very poor enantioselectivity (5% ee). Given the previously established influence of these residues on the activity and stereoselectivity of myoglobin-catalyzed cyclopropanation reactions,[10b,c,h,i] we decided to screen a panel of Mb variants with varying steric demands at the level of the distal His64 residue (\rightarrow Gly/ Ala/Val) and Val68 (\rightarrow Gly/Ala/Phe) (Table 1), which is located in close proximity to the heme center (SI Figure S1). Among these variants, Mb(H64V,V68A) and Mb(H64A,V68A) were found to exhibit significantly improved diastereo- and enantioselectivity (97 to >99% de and ee) compared to the wild-type protein (Table 1, entries 5,6). In addition, Mb(H64V,V68A) offered also improved activity, resulting in the nearly quantitative conversion (97%) of the fluorinated olefin to the desired cyclopropanation product 3a. Comparison of the results for the single variants Mb(H64V) and Mb(V68A) (Table 1, entries 2-3) and other double mutant variants, the two mutations in Mb(H64V,V68A) appear to have a clear synergistic effect in improving the performance of the biocatalyst, with the Val68Ala mutation mainly driving the improvement in stereoinduction and the His64Val mutation being crucial for improving activity and further refining its stereoselectivity (e.g., $91 \rightarrow > 99\%$ ee). At position 68, a further reduction in steric bulk (e.g., Ala \rightarrow Gly) reduces both diastereo- and enantioselectivity (entry 7 vs. 6), while the introduction of a bulkier residue (Phe) produces a variant with parent-like properties and a slight preference for the opposite enantiomer (-4% ee; entry 8).

On the basis of these results, Mb(H64V,V68A) was selected as the most promising biocatalyst for the target cyclopropanation reaction. Further investigations showed that Mb(H64V,V68A) catalyzes the formation of 3a with an initial rate of 520 TON min $^{-1}$ and the reaction reaches $>75\,\%$ completion in less than 5 min (SI Figure S2). While fast, this rate is 2-fold lower than the Mb(H64V,V68A)-catalyzed cyclopropanation of styrene with EDA (initial rate of 1000 TON min⁻¹),^[10b] possibly reflecting the lower reactivity of the CHF₂-containing substrate due to both electronic and catalyst-limited steric effects. Under condition, Mb(H64V,V68A) was determined to support up to 3000 turnovers (TON) (Table 1, entry 9). Furthermore, the reaction could be readily scaled up to afford 95 mg of enantiopure 3a (>99% de and ee) in high isolated yield (87%) (Table 1, entry 10).

We also tested the possibility to carry out this transformation in whole cells, which is of practical relevance for industrial processes.^[14] Under these conditions, the in vivo Mb(H64V,V68A)-catalyzed reaction successfully produced the desired cyclopropane **3a** while maintaining high diastereoselectivity and excellent enantioselectivity (96% *de* and >99% *ee*; Table 1, entry 11), albeit with reduced yield compared to the reaction with purified protein (67% vs. 97%). Interestingly, these experiments showed a bell-shape dependence of yield on cell density, with an optimum at relatively low cell density (OD₆₀₀ = 10) (SI Table S1). Counterintuitively, a reduction in yield was observed at higher cell densities (67% \rightarrow 45–48%), which may arise from partial sequestration of the fluorinated substrate by the cell membrane or other cellular components.

To explore the generality of this biocatalytic method, several α -difluoromethylated styrenes bearing different electron-donating and withdrawing substituents at the ortho-, meta- and para- position of the phenyl ring were tested in the Mb(H64V,V68A)-catalyzed cyclopropanation with EDA (Scheme 2). Despite a general reduction in yield (35-82%) vs. 98%), substituents in meta- and ortho- positions were well tolerated by the Mb(H64V,V68A) catalyst, as evinced from the synthesis of **3b-3d** with high to excellent diastereo- and enantioselectivity (95-98% de and 89-99% ee). A similar trend applies to para-substituted styrenes with small to medium-sized substituents at the para position such as fluoro (3i), methyl (3e), chloro (3j), and bromo (3k) groups, all of which underwent Mb(H64V,V68A)-catalyzed transformation to give the corresponding CHF₂-substituted cyclopropanes with high stereoselectivity (93-96% de, 82-94% ee) along with high yields (93-96%; Scheme 2). In contrast, the presence of bulkier substituents at the para


www.angewandte.org

© 2020 Wiley-VCH GmbH

These are not the final page numbers!

GDCh

Communications

Scheme 2. Substrate scope of Mb(H64V,V68A)-catalyzed cyclopropanation of αdifluoromethyl-olefins.^[a] [a] Reaction conditions: 20 μM Mb(H64V,V68A), 10 mM alkene, 20 mM EDA (1), 10 mM Na₂S₂O₄ in KPi 50 mM (pH 7), r.t., 16 hours. Yield, diastereomeric and enantiomeric excess determined by chiral GC-FID analysis using 1,3-benzodioxole as internal standard.^[b] Using Mb(H64G,V68A) as catalyst.^[17] position such as methoxy (3g), isopropyl (3f)and dimethylamino (3h) groups were accompanied by a noticeable reduction in yield and, for the latter two, also in enantioselectivity (21-25%) ee). Interestingly, this structure-reactivity trend diverges significantly from that observed for the Mb(H64V,V68A)-catalyzed cyclopropanation of styrenes with EDA and other acceptor-only diazo reagents,^[10c] thus indicating an important effect of the CHF₂ group on the substrate interaction with the biocatalyst. Nevertheless, structural characterization of 3k by X-ray crystallography (Scheme 2; SI Figure S4) revealed a (1R,2S) absolute configuration of the cyclopropane product, which mirrors the (1S,2S)stereoselectivity of Mb(H64V,V68A) with styrene and EDA.^[10b,c] Based on this information and the previously reported stereochemical model for this reaction, we posited that enlargement of the active site cavity at the level of His64, such as in Mb(H64G,V68A), should better accommodate the bulkier para-substituted styrenes. Gratifyingly, the Mb(H64G,V68A) variant proved indeed to be a superior catalyst for the synthesis of 3f-3h, offering higher diastereo- and enantioselectivity for these transformations (96-99% de, 41-85% ee).

Angewandte

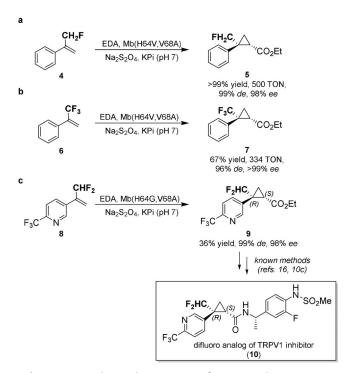
Indition Chemie

The high activity of Mb(H64V,V68A) in the cyclopropanation of α -CHF₂-(*p*-fluoro)styrene (2i) encouraged us to test additional electrondeficient alkenes, which are challenging substrates for carbene transfer catalysts due to the typically electrophilic character of their metallocarbene intermediate.^[11h,15] Notably, electrondeficient a-difluoromethyl-styrenes carrying CF₃-, formyl-, or a cyano substituent in the ring could efficiently converted into the corresponding cyclopropanation products 31, 3m, and 3n, respectively, in good yields (up to 80%) and excellent stereoselectivity (up to 99% de and 94% ee). Moreover, the absence of side reactions with 4-(formyl)-a-CHF2-styrene demonstrated the chemoselectivity and compatibility of the biocatalytic method with a substrate containing a reactive aldehyde group.

Substrate scope was then extended to aromatic O- and S-containing heterocycles which are widely used in medicinal chemistry.^[3e] Specifically, benzofuran- and thiophene-containing substrates were converted into product 30 and 3p, respectively, with high diastereo- and enantioselectivity (72-92% de, 95 to >99% ee). Of note, Mb(H64V,V68A) also retained high activity toward 20 (54% yield) despite the relatively large size of this substrate. An unactivated alkene such as 4-phenyl-2-(difluoromethyl) was also tested. butene (2q)While Mb(H64V,V68A) was able to afford the desired

Angew. Chem. Int. Ed. 2021, 60, 1-6

© 2020 Wiley-VCH GmbH


www.angewandte.org

These are not the final page numbers!

cyclopropane product $3\mathbf{q}$ in low yield (Scheme 2), the Mb(H64G,V68A) variant proved to be a superior biocatalyst for this transformation, offering higher yield (15% vs. 5%) along with higher enantioselectivity (51% vs. 25% *ee*) and excellent diastereoselectivity (>99% *de*), thus demonstrating the utility of these biocatalysts also in the context of unactivated olefins.

Having established the generality of Mb(H64V,V68A) for the synthesis of cis-(1R,2S)-difluoromethylated cyclopropanes, we investigated the possibility to obtain an enantiodivergent biocatalyst for this reaction. As shown for Mb(H64V,V68F) in Table 1, the substitution of Val68 with Phe resulted in a modest but detectable inversion of enantioselectivity toward formation of the (1S,2R)-configured cyclopropane (Table 1, entry 8). Based on this result, a panel of V68F-containing engineered myoglobins were tested and found to exhibit enhanced (1S,2R)-enantioselectivity (SI Table S2). Among them, Mb(L29T,H64V,V68F) was able to produce the desired (1S,2R)-enantiomer of **3a** in good yield (58%) and high enantiomeric excess (90% de and -87% ee) (Table 1, entry 12), thereby demonstrating the feasibility of achieving enantiodivergent selectivity in this myoglobin-catalyzed reaction.

To further explore the scope of this methodology in the context of fluoromethylated olefins, Mb(H64V,V68A) was challenged with α -fluoromethyl-styrene (4) and α -(trifluoromethyl)-styrene (6). Notably, both substrates were efficiently converted into the desired CH₂F- and CF₃-substituted cyclopropanes 5 and 7, respectively, in high yield and excellent diastereo- and enantioselectivity (96–99% *de* and 98 to > 99% *ee*; Scheme 3a,b), which further highlighted the broad substrate profile of this enzyme.

Scheme 3. Biocatalytic cyclopropanation of α -CH₂F- and α -CF₃-styrene and formal synthesis of a CHF₂ isostere of a TRPV1 inhibitor drug candidate.

www.angewandte.org

© 2020 Wiley-VCH GmbH

Angew. Chem. Int. Ed. 2021, 60, 1-6

Finally, we tested the utility of the present biocatalytic approach toward the generation of a difluoromethyl bioisostere of a drug molecule. To this end, we targeted the synthesis of **10** (Scheme 3c), which corresponds to an analog of a TRPV1 inhibitor drug candidate developed by Pfizer^[16] in which the methyl group is replaced by a CHF₂ group. Using Mb(H64G,V68A) as the catalyst, α -difluoromethyl-substituted olefin **8** could be successfully cyclopropanated in a semi-preparative scale reaction to afford **9** (50 mg, 36%) with high

stereoselectivity (99% de, 98% ee). This key intermediate can

be then converted into the final product 10 in only two steps

Angewandte

Chemie

using established routes.[10c, 16] In summary, we reported the first example of a biocatalytic system for the asymmetric cyclopropanation of difluoromethylated alkenes. Using two engineered myoglobins, Mb(H64V,V68A) and Mb(H64G,V68A), a broad panel of trisubstituted difluoromethylcyclopropanes were synthesized with good efficiency (up to 99% yield) and high to excellent stereoselectivity (up to >99% de and ee) using ethyl 2diazoacetate as carbene donor. The scope of these biocatalysts extends to include unactivated olefins as well as monoand trifluoro-methylated olefins, as exemplified by the synthesis of enantioenriched 3q, 5 and 7, respectively. The possibility of achieving enantiodivergent selectivity in this transformation was also demonstrated, with a stereocomplementary myoglobin variant showing up to -87% ee for this transformation. Finally, this strategy could be readily applied to enable the highly stereoselective synthesis of a key synthon for the chemoenzymatic synthesis of a difluoromethyl isostere of a drug candidate. This methodology is expected to create new opportunities for the biocatalytic and asymmetric synthesis of high-value fluorinated building blocks for organic and medicinal chemistry.

Acknowledgements

This work was supported by the U.S. National Institute of Health grant GM098628. The authors are grateful to Dr. William Brennessel for assistance with crystallographic analyses. MS and X-ray instrumentation are supported by U.S. National Science Foundation grants CHE-0946653 and CHE-1725028. This work was partially supported by Normandie Université (NU), the Région Normandie, the Centre National de la Recherche Scientifique (CNRS), Université de Rouen Normandie (URN), INSA Rouen Normandie, Labex SynOrg (ANR-11-LABX-0029) Innovation Chimie Carnot (I2C) and CNRS through the International Emerging Action program. J.D. thanks the Labex SynOrg (ANR-11-LABX-0029).

Conflict of interest

The authors declare no conflict of interest.

Keywords: biocatalysis \cdot enantioselective synthesis \cdot cyclopropanes \cdot carbene transfer \cdot myoglobin

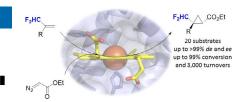
• These are not the final page numbers!

- a) T. T. Talele, J. Med. Chem. 2016, 59, 8712-8756; b) A. Reichelt, S. F. Martin, Acc. Chem. Res. 2006, 39, 433-442;
 c) D. Y. K. Chen, R. H. Pouwer, J. A. Richard, Chem. Soc. Rev. 2012, 41, 4631-4642.
- [2] a) M. P. Doyle, D. C. Forbes, *Chem. Rev.* 1998, 98, 911–936;
 b) H. Pellissier, *Tetrahedron* 2008, 64, 7041–7095;
 c) H. Lebel, J. F. Marcoux, C. Molinaro, A. B. Charette, *Chem. Rev.* 2003, 103, 977–1050.
- [3] a) H. J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Müller, U. Obst-Sander, M. Stahl, *ChemBioChem* 2004, 5, 637–643; b) C. Isanbor, D. O'Hagan, *J. Fluorine Chem.* 2006, 127, 303–319; c) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, *Chem. Soc. Rev.* 2008, 37, 320–330; d) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, *J. Med. Chem.* 2015, 58, 8315–8359; e) E. A. Ilardi, E. Vitaku, J. T. Njardarson, *J. Med. Chem.* 2014, 57, 2832–2842; f) J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, *Chem. Rev.* 2014, 114, 2432–2506.
- [4] a) N. A. Meanwell, J. Med. Chem. 2011, 54, 2529–2591; b) Y. Zafrani, D. Yeffet, G. Sod-Moriah, A. Berliner, D. Amir, D. Marciano, E. Gershonov, S. Saphier, J. Med. Chem. 2017, 60, 797–804.
- [5] E. J. Barreiro, A. E. Kummerle, C. A. M. Fraga, *Chem. Rev.* 2011, 111, 5215–5246.
- [6] a) J. A. Erickson, J. I. Mcloughlin, J. Org. Chem. 1995, 60, 1626–1631; b) C. D. Sessler, M. Rahm, S. Becker, J. M. Goldberg, F. Wang, S. J. Lippard, J. Am. Chem. Soc. 2017, 139, 9325–9332; c) Y. Zafrani, G. Sod-Moriah, D. Yeffet, A. Berliner, D. Amir, D. Marciano, S. Elias, S. Katalan, N. Ashkenazi, M. Madmon, E. Gershonov, S. Saphier, J. Med. Chem. 2019, 62, 5628–5637.
- [7] F. Narjes, K. F. Koehler, U. Koch, B. Gerlach, S. Colarusso, C. Steinkuhler, M. Brunetti, S. Altamura, R. De Francesco, V. G. Matassa, *Bioorg. Med. Chem. Lett.* 2002, *12*, 701–704.
- [8] a) M. Bos, T. Poisson, X. Pannecoucke, A. B. Charette, P. Jubault, *Chem. Eur. J.* 2017, 23, 4950-4961; b) T. Ishikawa, N. Kasai, Y. Yamada, T. Hanamoto, *Tetrahedron* 2015, 71, 1254–1260; c) K. J. Hock, L. Mertens, R. M. Koenigs, *Chem. Commun.* 2016, 52, 13783-13786; d) Y. Y. Duan, J. H. Lin, J. C. Xiao, Y. C. Gu, *Chem. Commun.* 2017, 53, 3870-3873; e) J. Decaens, S. Couve-Bonnaire, A. Charette, T. Poisson, P. Jubault, *Chem. Eur. J.* 2021, 27, 2935-2962.
- [9] a) M. Bos, W.S. Huang, T. Poisson, X. Pannecoucke, A. B. Charette, P. Jubault, *Angew. Chem. Int. Ed.* **2017**, *56*, 13319– 13323; *Angew. Chem.* **2017**, *129*, 13504–13508; b) Z.-Y. Cao, W. Wang, K. Liao, X. Wang, J. Zhou, J. Ma, *Org. Chem. Front.* **2018**, *5*, 2960–2968.
- [10] a) P. S. Coelho, E. M. Brustad, A. Kannan, F. H. Arnold, *Science* 2013, 339, 307-310; b) M. Bordeaux, V. Tyagi, R. Fasan, *Angew. Chem. Int. Ed.* 2015, 54, 1744-1748; *Angew. Chem.* 2015, 127, 1764-1768; c) P. Bajaj, G. Sreenilayam, V. Tyagi, R. Fasan, *Angew. Chem. Int. Ed.* 2016, 55, 16110-16114; *Angew. Chem.* 2016, 128, 16344-16348; d) D. Vargas, R. Khade, Y. Zhang, R. Fasan, *Angew. Chem. Int. Ed.* 2019, 58, 10148-10152; *Angew.*

Chem. 2019, 131, 10254–10258; e) A. M. Knight, S. B. J. Kan, R. D. Lewis, O. F. Brandenberg, K. Chen, F. H. Arnold, ACS Cent. Sci. 2018, 4, 372–377; f) O. F. Brandenberg, C. K. Prier, K. Chen, A. M. Knight, Z. Wu, F. H. Arnold, ACS Catal. 2018, 8, 2629–2634; g) K. Chen, S. Q. Zhang, O. F. Brandenberg, X. Hong, F. H. Arnold, J. Am. Chem. Soc. 2018, 140, 16402–16407; h) A. L. Chandgude, X. Ren, R. Fasan, J. Am. Chem. Soc. 2019, 141, 9145–9150; i) X. Ren, A. L. Chandgude, R. Fasan, ACS Catal. 2020, 10, 2308–2313; j) X. K. Ren, N. Y. Liu, A. L. Chandgude, R. Fasan, Angew. Chem. Int. Ed. 2020, 59, 21634– 21639; Angew. Chem. 2020, 132, 21818–21823.

- [11] a) P. Srivastava, H. Yang, K. Ellis-Guardiola, J. C. Lewis, *Nat. Commun.* 2015, *6*, 7789; b) G. Sreenilayam, E. J. Moore, V. Steck, R. Fasan, *Adv. Synth. Catal.* 2017, *359*, 2076–2089; c) G. Sreenilayam, E. J. Moore, V. Steck, R. Fasan, *ACS Catal.* 2017, *7*, 7629–7633; d) P. Dydio, H. M. Key, A. Nazarenko, J. Y. Rha, V. Seyedkazemi, D. S. Clark, J. F. Hartwig, *Science* 2016, *354*, 102–106; e) K. Oohora, H. Meichin, L. M. Zhao, M. W. Wolf, A. Nakayama, J. Hasegawa, N. Lehnert, T. Hayashi, *J. Am. Chem. Soc.* 2017, *139*, 17265–17268; f) L. Villarino, K. E. Splan, E. Reddem, L. Alonso-Cotchico, C. G. de Souza, A. Lledos, J. D. Marechal, A. M. W. H. Thunnissen, G. Roelfes, *Angew. Chem. Int. Ed.* 2018, *57*, 7785–7789; *Angew. Chem.* 2018, *130*, 7911–7915; g) J. M. Zhao, D. G. Bachmann, M. Lenz, D. G. Gillingham, T. R. Ward, *Catal. Sci. Technol.* 2018, *8*, 2294–2298; h) D. M. Carminati, R. Fasan, *ACS Catal.* 2019, *9*, 9683–9697.
- [12] K. Kariyawasam, R. Ricoux, J. P. Mahy, J. Porphyrins Phthalocyanines 2019, 23, 1273–1285.
- [13] a) A. L. Chandgude, R. Fasan, *Angew. Chem. Int. Ed.* 2018, *57*, 15852–15856; *Angew. Chem.* 2018, *130*, 16078–16082; b) A. Tinoco, V. Steck, V. Tyagi, R. Fasan, *J. Am. Chem. Soc.* 2017, *139*, 5293–5296.
- [14] a) P. Tufvesson, J. Lima-Ramos, M. Nordblad, J. M. Woodley, Org. Process Res. Dev. 2011, 15, 266–274; b) J. Wachtmeister, D. Rother, Curr. Opin. Biotechnol. 2016, 42, 169–177.
- [15] a) Y. Chen, J. V. Ruppel, X. P. Zhang, J. Am. Chem. Soc. 2007, 129, 12074–12075; b) H. B. Wang, D. M. Guptill, A. Varela-Alvarez, D. G. Musaev, H. M. L. Davies, Chem. Sci. 2013, 4, 2844–2850; c) V. N. G. Lindsay, D. Fiset, P. J. Gritsch, S. Azzi, A. B. Charette, J. Am. Chem. Soc. 2013, 135, 1463–1470.
- [16] K. J. Butcher, S. M. Denton, S. E. Field, A. T. Gillmore, G. W. Harbottle, R. M. Howard, D. A. Laity, C. J. Ngono, B. A. Pibworth, Org. Process Res. Dev. 2011, 15, 1192–1200.
- [17] Deposition Number 1893087 (for 3k) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Manuscript received: November 29, 2020 Accepted manuscript online: December 18, 2020 Version of record online:



Communications

Enantioselective Synthesis

- D. M. Carminati, J. Decaens,
- S. Couve-Bonnaire, P. Jubault,* R. Fasan* _____

Biocatalytic Strategy for the Highly Stereoselective Synthesis of CHF₂-Containing Trisubstituted Cyclopropanes

 $\label{eq:constraint} \begin{array}{l} {\sf CHieF_2\ cyclopropanes: A\ biocatalytic} \\ {\sf method\ was\ developed\ for\ the\ highly} \\ {\sf diastereo-\ and\ enantioselective\ synthesis} \\ {\sf of\ CHF_2-substituted\ cyclopropanes\ via} \\ {\sf myoglobin-catalyzed\ carbene\ transfer.} \\ {\sf These\ biocatalysts\ offer\ broad\ substrate} \\ {\sf scope,\ enantiodivergent\ selectivity\ and} \\ {\sf could\ be\ applied\ to\ produce\ a\ difluor-} \\ {\sf omethyl\ bioisostere\ of\ a\ drug\ candidate.} \end{array}$

6 www.angewandte.org
These are not the final page numbers!

© 2020 Wiley-VCH GmbH